e-Valuate

Iteration Plan 2

Version 1.1.0



e-Valuate

Version: 1.1.0

Iteration Plan 2

Date: 06/May/20

Revision History

Date Version Description Author
31/Oct/19 0.0.1 Created an initial draft of each section Jordyn Dent
27/Dec/19 0.1.0 Reorganize Introduction Kenny Houston

Develop a detailed Plan/timeline

Reorganize Resources

Detail use cases

Create empty task tables

Detail the evaluation criteria
03/Jan/20 0.2.0 Add Use Case Diagram Kenny Houston
05/Jan/20 0.2.1 Add Class Diagram Kenny Houston
17/Jan/20 0.3.0 Modify Class Diagram to include Kenny Housto

encryptedPassword
20/Jan/20 0.4.0 Update the expected date for Use Case 12 Hau Ha
21/Jan/20 0.4.1 Update task list for UC02 Jordyn Dent
22/Jan/20 0.4.2 Modify end of iteration date Kenny Houston
22/Jan/20 04.3 Update expected date for use case 15 Megan Phan
28/Jan/20 0.5.0 Update class diagram from client meeting Kenny Houston
08/Feb/20 1.0.0 Fix grammar in Purpose section Kenny Houston
06/May/20 1.1.0 Final touch ups and corrections Kenny Houston




e-Valuate

Version: 1.1.0

Iteration Plan 2

Date: 06/May/20

Table of Contents

Introduction
Purpose
Scope
Definitions, Acronyms, and Abbreviations
References
Glossary
UCO1 Create an Account
UCO02 Log in to an Account
UCO03 Create an Event
UCO04 Create a Rubric
UCI12 Access a List of Assigned Entries
UCI13 Grade an Entry
UCI15 Register for an event
Overview

Plan
28/Dec/19 - Design
06/Jan/20 - Development
17/Jan/20 - Testing
24/Jan/20 - Completion

Resources

Cost

Tools
Spring boot
Maven
MySQL
Hibernate
React]S
A Login API - TBD

Use Cases
UCO1 Create an Account
UCO02 Log in to an Account
UCO03 Create an Event
UC12 Access a List of Assigned Entries
UCI1S5 Register for an Event

Evaluation Criteria
Responsive
Ease of Use
Reliability

LN L L i L i L D o iy L i o

[=) W) Ne e e =) =N ) W)\ AN o L

00 N 9 N O &

o 0 oo @@




e-Valuate

Version: 1.1.0

Iteration Plan 2

Date: 06/May/20

Diagrams
Use Case Diagram

Class Diagram

10




e-Valuate Version: 1.1.0

Iteration Plan 2 Date: 06/May/20

Iteration Plan 2

1. Introduction

11 Purpose

The purpose of Iteration 2 is to make e-Valuate more flexible and user/event-oriented. The goal of Iteration
1 was to give e-Valuate the basic functions necessary for it to run, but that means leaving out many of the features
that tailor it to individual users. After Iteration 2, all data will be associated with specific users and/or specific
events. Iteration 2 is where e-Valuate becomes fully functional, though obviously still limited in some ways.
1.2 Scope

This iteration encompasses five different use cases. Many of these use cases are deeply connected to each
other and to previously implemented use cases. Linking web pages properly for a smooth and enjoyable user
experience is crucial.

13 Definitions, Acronyms, and Abbreviations

All terms can be found in the glossary.
1.4 References
1.4.1  Glossary
1.4.2 UCOT1 Create an Account
1.4.3 UCO02 Log in to an Account
1.4.4 UCO3 Create an Event
1.4.5 UCO04 Create a Rubric
1.4.6 UC12 Access a List of Assigned Entries
1.4.7 UC13 Grade an Entry
1.4.8 UC15 Register for an event

1.5 Overview

Iteration 2 builds off of Iteration 1 in that it focuses on more required features for e-Valuate. The purpose of
Iteration 2 is to make e-Valuate more flexible and user/event-oriented. We are doing this by focusing on developing
five use cases: UCO1 Create an Account, UC02 Log in to an Account, UC03 Create an Event, UC12 Access a List
of Assigned Entries, and UC15 Register for an Event. These five use cases come together to expand the
functionality of the use cases developed in Iteration 1 while making e-Valuate resemble a standalone product.

The rest of this iteration plan is devoted to presenting the timeline for this iteration as well as resources and
requirements.

2. Plan

21 28/Dec/19 - Design

The team will nail down the final requirements for this iteration. This includes modifying use cases and
specifying tasks to be completed during development. Any diagrams or models will also be completed in this phase.

2.2 06/Jan/20 - Development

Individual work on assigned use cases begins here. The development related tasks created in the previous
phase will be completed during this phase. This starts with developing the new back end models necessary for
representing new information. Later, this includes developing the front end of each corresponding use case, as well
as the interactions between the use cases.

Some testing will be done on an individual level. Also, when significant progress is made, the specific
implementation will be approved by the client, so course corrections can be made as soon as possible.




e-Valuate Version: 1.1.0

Iteration Plan 2 Date: 06/May/20

23 17/Jan/20 - Testing

Each use case must be tested vigorously by team members who did not develop them. This will ensure total
functionality as well as help us avoid bugs and implementation errors. The final implementations will also need to
be approved by the client.

24 24/Jan/20 - Completion
The iteration will be approved and complete by 31/Jan/20.

3. Resources

New resources for this iteration may include API’s to assist with the login procedure.

3.1 Cost

We now have an underlying system which development will build on top of. The greatests costs during this
iteration will likely come from the time it takes to weave the different use cases and pages together in a way which
produces a well designed product. However, individual time costs will likely be less than Iteration 1 now that the
application is being added to, rather than being built from scratch.

3.2 Tools

3.2.1  Spring boot
3.2.2 Maven
323 MySQL

3.2.4 Hibernate
3.2.5 ReactdS
3.2.6 A Login API- TBD

4, Use Cases

41 UCO01 Create an Account

This Use Case will be taking advantage of our account API. The API will have to be integrated with our
backend system to account for the links between accounts and other models. Accounts can play many roles in the
form of Judges, Chairs, and possibly Contestants.

This use case has been assigned to Action.

Task Assignee Expected | Expected | Actual Actual
Start End Start End
Design Page Action 05/Jan/20 | 10/Jan/20 | 05/Jan/20 | 10/Jan/20
Develop frontend Action 13/Jan/20 | 18/Jan/20 | 13/Jan/20 | 22/Jan/20
Develop services and controllers Action 22/Jan/20 | 28/Jan/20 | 23/Jan/20 | 10/Feb/20
Testing Period All 28/Jan/20 | 01/Feb/20 | 10/Feb/20 | 11/Feb/20
Members

4.2 UCO02 Log in to an Account

When a user logs into their account, it is imperative that they only be able to access information associated




e-Valuate

Version: 1.1.0

Iteration Plan 2

Date: 06/May/20

with their account. This means, limiting their privileges regarding event details, limiting which entries can be
graded, and restricting their access to score reports.

Some research is likely necessary to determine how to most safely implement these features.

This use case has been assigned to Jordyn.

Task

Assignee

Expected
Start

Expected
End

Actual
Start

Actual
End

Design page

Develop frontend for the login page

Research user privilege management

Develop service and controller classes

4.3 UCO03 Create an Event

This use case will require some integration with UC04 Create a Rubric. From this iteration on, a rubric will

be associated with one, and only one event. We may consider, down the line, the ability for chairs to copy rubrics
from other events they manage. But, as of now, rubrics are always created from scratch, for a particular event.
This is a good opportunity to implement a hub for a given event from the chair’s perspective. It could

include links to the rubric creation page, and eventually include links to judge invitations and the like.

This use case has been assigned to Jackie.

Task Assignee | Expected | Expected | Actual Actual
Start End Start End

Frontend coding Jackie 21/Jan/20 | 26/Jan/20

Backend coding Jackie 21/Jan/20 | 26/Jan/20

4.4 UC12 Access a List of Assigned Entries

This use case will require integration with UC13 Grade and Entry. It will be necessary to make sure that the
wrong entries cannot be graded or that the right entries cannot be graded with the wrong rubrics. These details center

around the event model and the security of the system.

This use case has been assigned to Hau.

Task Assignee | Expected | Expected | Actual Actual
Start End Start End

Design/draw the page Hau 05/Jan/20 | 10/Jan/20 | 05/Jan/20 | 10/Jan/20

Build frontend Access List of Assigned Hau 12/Jan/20 | 19/Jan/20 | 12/Jan/20 | 19/Jan/20

Entries page

Build ListofAssignedEntries Controller and Hau 20/Jan/20 | 26/Jan/20 | 20/Jan/20 | 26/Jan/20




e-Valuate Version: 1.1.0

Iteration Plan 2 Date: 06/May/20

Services classes

Connect backend to frontend Hau 20/Jan/20 | 26/Jan20 20/Jan/20 | 31/Jan/20
Testing Period All 27/Jan/20 | 31/Jan/20 | 01/Feb/20 | 07/Feb/20
Member

4.5 UC15 Register for an Event

This use case may require more discussion for the final implementation. How should an event be found by
a contestant? Should they be able to search by name? Search by event ID or a similarly unique code? These
decisions should be indicated in the Use Case documentation.

Once an event is chosen, registration is straight forward.

This use case has been assigned to Megan.

Task Assignee Expected | Expected | Actual Actual
Start End Start End

Design the web page Megan 06/Jan/20 | 10/Jan/20 | 10/Jan/20 | 15/Jan/20

Implement the front end part Megan 10/Jan/20 | 20/Jan/20 | 15/Jan/20 | 25/Jan/20

Build RegisterEvent controller and services Megan 20/Jan/20 | 27/Jan/20 | 20/Jan/20 | 01/Feb/20

Connect front end with back end Megan 20/Jan/20 | 27/Jan/20 | 01/Feb/20 | 04/Feb/20
Get the event’s details from the database Megan 20/Jan/20 | 27/Jan/20 | 04/Feb/20 | 05/Feb/20
Testing Megan 27/Jan/20 | 30/Jan/20 | 05/Feb/20 | 07/Feb/20
5. Evaluation Criteria
5.1 Responsive

The system needs to react to the user’s inputs quickly. If a user were to become frustrated with slow
response times, they would be less likely to continue using the system in the future. A slow electronic system can
quickly become more frustrating than doing everything by hand on physical paper.

5.2 Ease of Use

The users need to be able to navigate the system without the guidance of a third party. We will present the
web app to the client, and provide no other guidance other than what the built-in system provides. If they can
accomplish all the desired tasks without becoming frustrated, then the system will be deemed easy enough to use.

5.3 Reliability

The user must be able to have full confidence that the system will save all the required information without
fail. Or at the very least, convey clearly to the user when information has failed to save properly.




e-Valuate

Version: 1.1.0

Iteration Plan 2

Date: 06/May/20

6. Diagrams

6.1 Use Case Diagram

e-Valuate System

A
f<

Judge

UCO01 Create an
Account

UCO02 Log into an
Account

UCO03 Create an
Event

UCO04 Create a
Rubric for an Event

UCO07 Analyze a
Score Report (alpha)

UC12 Access a List of
Assigned Entries

UC13 Grade an Entry

UC15 Register for
an Event

AN

7

Use cases in blue are new to this iteration.

A

Log In API

A

Contestant




e-Valuate

Version: 1.1.0

Iteration Plan 2

Date: 06/May/20

Account

6.2 Class Diagram
<<abstract>>
Role
id: long

account: Account

screenName: string

id: long

email: string (unigue)
encryptedPassword: string

firstName: string

event: Event (required) HH
. . lastName: strin
scoredRubrics: ScoredRubric(] 2
roles: Role[]
A T
Chair Judge o= *
Rubric Category
+ \ id: long id: long
event: Event name: string
pe Y o B 5 . R a3
totalMaxScore: int (generated) description: string (optional)
Event categories: Category[] maxScore: int (possibly generated)
id: long scoredRubrics: ScoredRubrics] parentCategory: Category (optional)
name: string e subcategories: Category(]

description: string (optional)
dateTime: GregorianCalendar
location: String

chair: Role

judges: Role[]

rubric: Rubric

entries: Entry[]

+

ScoredRubric 1

id: long

rubric: Rubric (optional)

scores: Score[]

T =

entry: Entry

template: Rubric

Score

judge: Role
isComplete: boolean

totalScore: int (generated)

scoredCategories: Score[]

judgeNote: string (optional)

id: long

template: Category

pointsAwarded: int (possibly generated)
parentScore: Score (optional)
subScores: Score[]

scoredRubric: ScoredRubric (optional)

Entry

id: long

title: string

description: string (optional)
event: Event

scoredRubrics: ScoredRubric(]
teamName: String
teamLeadName: String
teamLeadEmail: String

teamMemberNames: String (comma separated)

{ T




